Chapter 0: Problem 52
Sketch the graph of the first function by plotting points if necessary. Then use transformation(s) to obtain the graph of the second function. \(y=\cos x, \quad y=\frac{1}{2} \cos \left(x-\frac{\pi}{4}\right)\)
Chapter 0: Problem 52
Sketch the graph of the first function by plotting points if necessary. Then use transformation(s) to obtain the graph of the second function. \(y=\cos x, \quad y=\frac{1}{2} \cos \left(x-\frac{\pi}{4}\right)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the exact value of the given expression. $$ \cos ^{-1} \frac{1}{2} $$
Find \(f^{-1}(a)\) for the function \(f\) and the real number \(a\). $$ f(x)=2 x^{5}+3 x^{3}+2 ; \quad a=2 $$
a. Show that if a function \(f\) is defined at \(-x\) whenever it is defined at
\(x\), then the function \(g\) defined by \(g(x)=f(x)+f(-x)\) is an even function
and the function \(h\) defined by \(h(x)=f(x)-f(-x)\) is an odd function.
b. Use the result of part (a) to show that any function \(f\) defined on an
interval \((-a, a)\) can be written as a sum of an even function and an odd
function.
c. Rewrite the function
$$
f(x)=\frac{x+1}{x-1} \quad-1
Plot the graph of the function \(f\) in an appropriate viewing window. (Note: The answer is not unique.) $$ f(x)=x^{2} \sin \frac{1}{x} $$
Let \(f(x)=2 x^{3}-5 x^{2}+x-2\) and \(g(x)=2 x^{3}\). a. Plot the graph of \(f\) and \(g\) using the same viewing window: \([-5,5] \times[-5,5]\). b. Plot the graph of \(f\) and \(g\) using the same viewing window: \([-50,50] \times[-100,000,100,000] .\) c. Explain why the graphs of \(f\) and \(g\) that you obtained in part (b) seem to coalesce as \(x\) increases or decreases without bound. Hint: Write \(f(x)=2 x^{3}\left(1-\frac{5}{2 x}+\frac{1}{2 x^{2}}-\frac{1}{x^{3}}\right)\) and study its behavior for large values of \(x\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.