Chapter 0: Problem 33
Let $$ f(x)=\left\\{\begin{array}{ll} 2 x-1 & \text { if } x<1 \\ \sqrt{x} & \text { if } 1 \leq x<4 \\ \frac{1}{2} x^{2}-6 & \text { if } x \geq 4 \end{array}\right. $$ Find \(f^{-1}(x)\), and state its domain.
Chapter 0: Problem 33
Let $$ f(x)=\left\\{\begin{array}{ll} 2 x-1 & \text { if } x<1 \\ \sqrt{x} & \text { if } 1 \leq x<4 \\ \frac{1}{2} x^{2}-6 & \text { if } x \geq 4 \end{array}\right. $$ Find \(f^{-1}(x)\), and state its domain.
All the tools & learning materials you need for study success - in one app.
Get started for freeLet \(f(x)=2 x^{3}-5 x^{2}+x-2\) and \(g(x)=2 x^{3}\). a. Plot the graph of \(f\) and \(g\) using the same viewing window: \([-5,5] \times[-5,5]\). b. Plot the graph of \(f\) and \(g\) using the same viewing window: \([-50,50] \times[-100,000,100,000] .\) c. Explain why the graphs of \(f\) and \(g\) that you obtained in part (b) seem to coalesce as \(x\) increases or decreases without bound. Hint: Write \(f(x)=2 x^{3}\left(1-\frac{5}{2 x}+\frac{1}{2 x^{2}}-\frac{1}{x^{3}}\right)\) and study its behavior for large values of \(x\).
Plot the graph of the function \(f\) in an appropriate viewing window. (Note: The answer is not unique.) $$ f(x)=\frac{\sin \sqrt{x}}{\sqrt{x}} $$
Show that \(f\) and \(g\) are inverses of each other by verifying that \(f[g(x)]=x\) and \(g[f(x)]=x\). $$ f(x)=\frac{1+x}{1-x} ; \quad g(x)=\frac{x-1}{x+1} $$
Find the exact value of the given expression. $$ \sin ^{-1}\left(-\frac{1}{2}\right) $$
Plot the graph of the function \(f\) in an appropriate viewing window. (Note: The answer is not unique.) $$ f(x)=x^{2}-0.1 x $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.