Chapter 0: Problem 32
Determine whether the functions are even, odd, or neither. a. \(y=\cot x\) b. \(y=2 \sin \frac{x}{2}\) c. \(y=2 \sec x\)
Chapter 0: Problem 32
Determine whether the functions are even, odd, or neither. a. \(y=\cot x\) b. \(y=2 \sin \frac{x}{2}\) c. \(y=2 \sec x\)
All the tools & learning materials you need for study success - in one app.
Get started for freea. Show that \(f(x)=-x^{2}+x+1\) on \(\left[\frac{1}{2}, \infty\right)\) and \(g(x)=\frac{1}{2}+\sqrt{\frac{5}{4}-x}\) on \(\left(-\infty, \frac{5}{4}\right)\) are inverses of each other. b. Solve the equation \(-x^{2}+x+1=\frac{1}{2}+\sqrt{\frac{5}{4}-x}\). Hint: Use the result of part (a).
Find the zero(s) of the function f to five decimal places. $$ f(x)=2 x^{4}-4 x^{2}+1 $$
Find the exact value of the given expression. $$ \sin \left(\sin ^{-1} \frac{1}{\sqrt{2}}\right) $$
Plot the graph of the function \(f\) in an appropriate viewing window. (Note: The answer is not unique.) $$ f(x)=\frac{\sin \sqrt{x}}{\sqrt{x}} $$
Sketch the graph of the first function by plotting points if necessary. Then use transformation(s) to obtain the graph of the second function. $$y=x^{2}, \quad y=\left|x^{2}-2 x-1\right|$$ 54\. $$y=\tan x, \quad y=\tan \left(x+\frac{\pi}{3}\ri
What do you think about this solution?
We value your feedback to improve our textbook solutions.