Chapter 0: Problem 24
Find functions \(f, g\), and h such that \(F=f \circ g \circ h .\) (Note: The answer is not unique.) a. \(F(x)=\frac{1}{\left(2 x^{2}+x+3\right)^{3}}\) b. \(F(x)=\frac{\sqrt{x+1}-1}{\sqrt{x+1}+1}\)
Chapter 0: Problem 24
Find functions \(f, g\), and h such that \(F=f \circ g \circ h .\) (Note: The answer is not unique.) a. \(F(x)=\frac{1}{\left(2 x^{2}+x+3\right)^{3}}\) b. \(F(x)=\frac{\sqrt{x+1}-1}{\sqrt{x+1}+1}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the inverse of \(f .\) Then sketch the graphs of \(f\) and \(f^{-1}\) on the same set of axes. $$ f(x)=\sin (2 x-1), \quad \frac{1}{2}\left(1-\frac{\pi}{2}\right) \leq x \leq \frac{1}{2}\left(1+\frac{\pi}{2}\right) $$
Find the exact value of the given expression. $$ \sin \left(\sin ^{-1} \frac{1}{\sqrt{2}}\right) $$
Find the exact value of the given expression. $$ \sin ^{-1} 0 $$
Find the inverse of \(f .\) Then sketch the graphs of \(f\) and \(f^{-1}\) on the same set of axes. $$ f(x)=\sqrt{9-x^{2}}, \quad x \geq 0 $$
Find the inverse of \(f .\) Then sketch the graphs of \(f\) and \(f^{-1}\) on the
same set of axes.
$$
f(x)=\cot ^{-1}\left(\frac{x}{3}\right), \quad 0
What do you think about this solution?
We value your feedback to improve our textbook solutions.