To find the tangential component of acceleration, we will use the formula \(a_{T}=\frac{v\cdot a}{\left\|v \right\|}\).
Now, if we differentiate \(r(t)\) we get \(r^{\prime}\left ( t \right )=v\left ( t \right )\) and \(r^{\prime \prime}\left ( t \right )=a\left ( t \right )\).
So,
\(r\left ( t \right )=\left<t cos t, t sin t, t \right>\)
\(v(t)=r^{\prime}\left ( t \right )=\left<-t sint +cost,t cos t +sin t,1 \right>\)
\(a(t)=r^{\prime \prime} \left ( t \right )=\left<-t cost -sint -sint, -t sin t +cos t + cos t,0 \right>\)
\(\left\|v \right\|=\left\| \left<-t sint +cost,t cos t +sin t,1 \right>\right\|\)
\(\left\| v\right\|=\sqrt{\left ( -t sint +cost \right )^{2}+\left ( t cos t +sin t \right )^{2}+1}\)
\(\left\| v\right\|=\sqrt{t^{2}\left ( sin^{2}t+cos^{2}t \right )+1+1}\)
\(\left\| v\right\|=\sqrt{t^{2}+2}\)
\(v\cdot a=v\left ( t \right )\cdot a\left ( t \right )\)
\(v\cdot a=\left<-t sint +cost,t cos t +sin t,1 \right> \cdot \left<-t cost -sint -sint, -t sin t +cos t + cos t,0 \right>\)
\(v\cdot a=2t-t\)
\(v\cdot a=t\)
Now, put all the above values we get in the formula
\(a_{T}=\frac{v\cdot a}{\left\|v \right\|}\)
\(a_{T}=\frac{t}{\sqrt{t^{2}+2}}\)