Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find

(a) the displacement vectors from r(a) tor(b),

(b) the magnitude of the displacement vector, and

(c) the distance travelled by a particle on the curve from a to b.

r(t) = α sinβt,α cosβt,γt, a = 0, b = 1

Short Answer

Expert verified

(a)Thedisplacementvectorfromr(a)tor(b)isαsinβ,α(cosβ-1),γ(b)Hencethemagnitudeofthedisplacementvectoris=2α2(1-cosβ)+γ2(c)Thedistancetravelledfromatobis=α2β2+γ2

Step by step solution

01

Part (a) Step 1. Given Information

The given function is r(t) = α sinβt,α cosβt,γt, a = 0, b = 1

02

Part (a) Step 2. Finding the  displacement vector   

r(t)=αsinβt,αcosβt,γt,a=0,b=1Thedisplacementvectorfromr(a)tor(b)=r(b)-ra(a)=r(1)-r(0)=αsinβ,αcosβ,γ-αsinβ0,αcosβ0,γ(0),=αsinβ,αcosβ,γ-0,α,0=αsinβ,α(cosβ-1),γThedisplacementvectorfromr(a)tor(b)isαsinβ,α(cosβ-1),γ

03

Part (b) Step 1.  Finding the magnitude of the displacement vector,  

Themagnitudeofdisplacementvectorαsinβ,α(cosβ-1),γ=α2sin2β,α2(cosβ-1)2,γ2=2α2(1-cosβ)+γ2Hencethemagnitudeofthedisplacementvectoris=2α2(1-cosβ)+γ2

04

Part (c) Step 1. Finding the  displacement vector  

r(t)=αsinπt,αcosβt,γtr'(t)=α2β2cos2βt+α2β2sin2βt+γ2=α2β2cos2βt+sin2βt+γ2=α2β2+γ2Thedistancetravelledfromatobis=01α2β2+γ2dt=α2β2+γ2(1-0)substitute the limits fort=α2β2+γ2Thedistancetravelledfromatobis=α2β2+γ2

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free