Chapter 7: Q.1 b) (page 630)
consider the statement if for every x>0 and, then the improper integrals both converge. The objective is to determine whether statement is true or false.
Short Answer
False
Chapter 7: Q.1 b) (page 630)
consider the statement if for every x>0 and, then the improper integrals both converge. The objective is to determine whether statement is true or false.
False
All the tools & learning materials you need for study success - in one app.
Get started for freeLeila finds that there are more factors affecting the number of salmon that return to Redfish Lake than the dams: There are good years and bad years. These happen at random, but they are more or less cyclical, so she models the number of fish returning each year as , where h is the number of fish whose spawn she releases from the hatchery annually.
(a) Show that the sustained number of fish returning in even-numbered years approach approximately
(Hint: Make a new recurrence by using two steps of the one given.)
(b) Show that the sustained number of fish returning in odd-numbered years approaches approximately
(c) How should Leila choose h, the number of hatchery fish to breed in order to hold the minimum number of fish returning in each run near some constant P?
Determine whether the series converges or diverges. Give the sum of the convergent series.
Explain why the integral test may be used to analyze the given series and then use the test to determine whether the series converges or diverges.
Find the values of x for which the series converges.
Leila, in her capacity as a population biologist in Idaho, is trying to figure out how many salmon a local hatchery should release annually in order to revitalize the fishery. She knows that ifsalmon spawn in Redfish Lake in a given year, then only fish will return to the lake from the offspring of that run, because of all the dams on the rivers between the sea and the lake. Thus, if she adds the spawn from h fish, from a hatchery, then the number of fish that return from that run k will be .
(a) Show that the sustained number of fish returning approaches as k→∞.
(b) Evaluate .
(c) How should Leila choose h, the number of hatchery fish to raise in order to hold the number of fish returning in each run at some constant P?
What do you think about this solution?
We value your feedback to improve our textbook solutions.