Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Prove that the converse of Theorem \(7.9\) is not true by finding a continuous function \(a:\left [ 1,\infty \right )\rightarrow R\) such that \(\lim_{x\rightarrow \infty }a\left \( x \right \)\) does not exist but \(\left \{ a\left \( x \right \) \right \}\) converges.

Short Answer

Expert verified

An example of a continuous function \(a:\left [ 1,\infty \right )\rightarrow R\) such that \(\lim_{x\rightarrow \infty }a\left \( x \right \)\) does not exist but \(\left \{ a\left \( x \right \) \right \}\) converges is \(a\left ( x \right )=\sin \left ( \pi x \right )\).

Step by step solution

01

Step 1. Given Information

The objective is to find an example of a continuous function \(a:\left [ 1,\infty \right )\rightarrow R\) such that \(\lim_{x\rightarrow \infty }a\left \( x \right \)\) does not exist but \(\left \{ a\left \( x \right \) \right \}\) converges.

02

Step 2. Example

Consider the function \(a\left ( x \right )=\sin \left ( \pi x \right )\).

The function is continuous on \(\left [ 1,\infty \right )\) and \(\lim_{x\rightarrow \infty }a\left \( x \right \)\) does not exist.

CASE \(1\): \(x \epsilon \mathbb{Z}\) then

\(\begin{align*}

a\left \{ x \right \} &= \sin\left ( \pi x \right ) \\

a\left \{ x \right \} &= 0

\end{align*}\)

Then, (\lim_{x\rightarrow \infty }a\left \( x \right \)=0\).

03

Step 3. Explanation for next case

Case \(2\): If x=\frac{4n+1}{2}, n\epsilon \mathbb{N} then

\(\begin{align*}

a\left \{ x \right \} &= \sin\left ( \pi x \right ) \\

a\left \{ x \right \} &= \sin\left ( \frac{4n+1}{2}\pi \right ) \\

a\left \{ x \right \} &= 1

\end{align*}\)

and

\(\begin{align*}

\lim_{x\rightarrow \infty }a\left \{ x \right \} &= \lim_{x\rightarrow \infty } \sin\left ( \pi x \right ) \\

&= \lim_{x\rightarrow \infty } \sin\left ( \frac{4n+1}{2}\pi \right ) \\

&= 1

\end{align*}\)

04

Step 4. Explanation

So, it is clear that limit does not exist.

Now,

\(\begin{align*}

a_{k}&=a(k) \\

& =\sin\left (k\pi \right )

\end{align*}\)

As, \(k\epsilon \mathbb{N}\) so \(\sin\left (k\pi \right )=0\).

As each term of the series is \(0\), so \left \(\{ a\left ( x \right ) \right \}\) converges to \(0\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free