Chapter 7: Q. 76 (page 605)
Prove that the converse of Theorem \(7.9\) is not true by finding a continuous function \(a:\left [ 1,\infty \right )\rightarrow R\) such that \(\lim_{x\rightarrow \infty }a\left \( x \right \)\) does not exist but \(\left \{ a\left \( x \right \) \right \}\) converges.
Short Answer
An example of a continuous function \(a:\left [ 1,\infty \right )\rightarrow R\) such that \(\lim_{x\rightarrow \infty }a\left \( x \right \)\) does not exist but \(\left \{ a\left \( x \right \) \right \}\) converges is \(a\left ( x \right )=\sin \left ( \pi x \right )\).