Chapter 7: Q. 69 (page 654)
Prove that if the series diverges, then the series also diverges.
Short Answer
The series is convergent
The seriesis divergent
Chapter 7: Q. 69 (page 654)
Prove that if the series diverges, then the series also diverges.
The series is convergent
The seriesis divergent
All the tools & learning materials you need for study success - in one app.
Get started for freeDetermine whether the series converges or diverges. Give the sum of the convergent series.
Determine whether the series converges or diverges. Give the sum of the convergent series.
Explain why the integral test may be used to analyze the given series and then use the test to determine whether the series converges or diverges.
Let be a continuous, positive, and decreasing function. Complete the proof of the integral test (Theorem 7.28) by showing that if the improper integral converges, then the series localid="1649180069308" does too.
Prove Theorem 7.25. That is, show that the series either both converge or both diverge. In addition, show that if converges to L, thenconverges tolocalid="1652718360109"
What do you think about this solution?
We value your feedback to improve our textbook solutions.