Chapter 7: Q. 54 (page 626)
Let be a continuous, positive, and decreasing function. Complete the proof of the integral test (Theorem 7.28) by showing that if the improper integral converges, then the series localid="1649180069308" does too.
Chapter 7: Q. 54 (page 626)
Let be a continuous, positive, and decreasing function. Complete the proof of the integral test (Theorem 7.28) by showing that if the improper integral converges, then the series localid="1649180069308" does too.
All the tools & learning materials you need for study success - in one app.
Get started for freeLet be any real number. Show that there is a rearrangement of the terms of the alternating harmonic series that converges to . (Hint: Argue that if you add up some finite number of the terms of , the sum will be greater than . Then argue that, by adding in some other finite number of the terms of
, you can get the sum to be less than . By alternately adding terms from these two divergent series as described in the preceding two steps, explain why the sequence of partial sums you are constructing will converge to .)
Use any convergence test from this section or the previous section to determine whether the series in Exercises 31–48 converge or diverge. Explain how the series meets the hypotheses of the test you select.
Use either the divergence test or the integral test to determine whether the series in Exercises 32–43 converge or diverge. Explain why the series meets the hypotheses of the test you select.
35.
Find the values of x for which the series converges.
Prove Theorem 7.25. That is, show that the series either both converge or both diverge. In addition, show that if converges to L, thenconverges tolocalid="1652718360109"
What do you think about this solution?
We value your feedback to improve our textbook solutions.