Chapter 7: Q 51. (page 615)
Determine whether the series converges or diverges. Give the sum of the convergent series.
Short Answer
The series converges to .
Chapter 7: Q 51. (page 615)
Determine whether the series converges or diverges. Give the sum of the convergent series.
The series converges to .
All the tools & learning materials you need for study success - in one app.
Get started for freeExpress each of the repeating decimals in Exercises 71–78 as a geometric series and as the quotient of two integers reduced to lowest terms.
Use any convergence test from this section or the previous section to determine whether the series in Exercises 31–48 converge or diverge. Explain how the series meets the hypotheses of the test you select.
Express each of the repeating decimals in Exercises 71–78 as a geometric series and as the quotient of two integers reduced to lowest terms.
Express each of the repeating decimals in Exercises 71–78 as a geometric series and as the quotient of two integers reduced to lowest terms.
Let be any real number. Show that there is a rearrangement of the terms of the alternating harmonic series that converges to . (Hint: Argue that if you add up some finite number of the terms of , the sum will be greater than . Then argue that, by adding in some other finite number of the terms of
, you can get the sum to be less than . By alternately adding terms from these two divergent series as described in the preceding two steps, explain why the sequence of partial sums you are constructing will converge to .)
What do you think about this solution?
We value your feedback to improve our textbook solutions.