Chapter 7: Q. 33 (page 653)
Use the ratio test for absolute convergence to determine whether the series in Exercises 30–35 converge absolutely or diverge.
Short Answer
The series converges absolutely.
Chapter 7: Q. 33 (page 653)
Use the ratio test for absolute convergence to determine whether the series in Exercises 30–35 converge absolutely or diverge.
The series converges absolutely.
All the tools & learning materials you need for study success - in one app.
Get started for freeLet be any real number. Show that there is a rearrangement of the terms of the alternating harmonic series that converges to . (Hint: Argue that if you add up some finite number of the terms of , the sum will be greater than . Then argue that, by adding in some other finite number of the terms of
, you can get the sum to be less than . By alternately adding terms from these two divergent series as described in the preceding two steps, explain why the sequence of partial sums you are constructing will converge to .)
Provide a more general statement of the integral test in which the function f is continuous and eventually positive, and decreasing. Explain why your statement is valid.
Determine whether the series converges or diverges. Give the sum of the convergent series.
Let andbe two convergent geometric series. Prove that converges. If neither c nor b is 0, could the series be ?
Prove Theorem 7.25. That is, show that the series either both converge or both diverge. In addition, show that if converges to L, thenconverges tolocalid="1652718360109"
What do you think about this solution?
We value your feedback to improve our textbook solutions.