Chapter 7: Q. 24 (page 652)
Use the alternating series test to determine whether the series in Exercises 24–29 converge or diverge. If a series converges, determine whether it converges absolutely or conditionally.
Short Answer
The seriesdiverges
Chapter 7: Q. 24 (page 652)
Use the alternating series test to determine whether the series in Exercises 24–29 converge or diverge. If a series converges, determine whether it converges absolutely or conditionally.
The seriesdiverges
All the tools & learning materials you need for study success - in one app.
Get started for freeWhat is the contrapositive of the implication “If A, then B"?
Find the contrapositives of the following implications:
If a divides b and b dividesc, then a divides c.
Determine whether the series converges or diverges. Give the sum of the convergent series.
Explain why the integral test may be used to analyze the given series and then use the test to determine whether the series converges or diverges.
Let be any real number. Show that there is a rearrangement of the terms of the alternating harmonic series that converges to . (Hint: Argue that if you add up some finite number of the terms of , the sum will be greater than . Then argue that, by adding in some other finite number of the terms of
, you can get the sum to be less than . By alternately adding terms from these two divergent series as described in the preceding two steps, explain why the sequence of partial sums you are constructing will converge to .)
True/False:
Determine whether each of the statements that follow is true or false. If a statement is true, explain why. If a statement is false, provide a counterexample.
(a) True or False: If , then converges.
(b) True or False: If converges, then .
(c) True or False: The improper integral converges if and only if the series converges.
(d) True or False: The harmonic series converges.
(e) True or False: If , the series converges.
(f) True or False: If as , then converges.
(g) True or False: If converges, then as .
(h) True or False: If and is the sequence of partial sums for the series, then the sequence of remainders converges to .
What do you think about this solution?
We value your feedback to improve our textbook solutions.