Chapter 7: Q. 24 (page 631)
In Exercises use one of the comparison tests to determine whether the series converges or diverges. Explain how the given series satisfies the hypotheses of the test you use.
.
Short Answer
The seriesis convergent.
Chapter 7: Q. 24 (page 631)
In Exercises use one of the comparison tests to determine whether the series converges or diverges. Explain how the given series satisfies the hypotheses of the test you use.
.
The seriesis convergent.
All the tools & learning materials you need for study success - in one app.
Get started for freeFor a convergent series satisfying the conditions of the integral test, why is every remainder positive? How can be used along with the term from the sequence of partial sums to understand the quality of the approximation ?
Explain why the integral test may be used to analyze the given series and then use the test to determine whether the series converges or diverges.
Express each of the repeating decimals in Exercises 71–78 as a geometric series and as the quotient of two integers reduced to lowest terms.
Explain why the integral test may be used to analyze the given series and then use the test to determine whether the series converges or diverges.
Use either the divergence test or the integral test to determine whether the series in Given Exercises converge or diverge. Explain why the series meets the hypotheses of the test you select.
What do you think about this solution?
We value your feedback to improve our textbook solutions.