Chapter 7: Q .1.d) (page 630)
Iffor every positive integer k, then the series diverges. The objective is to determine whether statement is true or false.
Short Answer
False
Chapter 7: Q .1.d) (page 630)
Iffor every positive integer k, then the series diverges. The objective is to determine whether statement is true or false.
False
All the tools & learning materials you need for study success - in one app.
Get started for freeFor each series in Exercises 44–47, do each of the following:
(a) Use the integral test to show that the series converges.
(b) Use the 10th term in the sequence of partial sums to approximate the sum of the series.
(c) Use Theorem 7.31 to find a bound on the tenth remainder, .
(d) Use your answers from parts (b) and (c) to find an interval containing the sum of the series.
(e) Find the smallest value of n so that localid="1649224052075" .
Find the values of x for which the series converges.
True/False:
Determine whether each of the statements that follow is true or false. If a statement is true, explain why. If a statement is false, provide a counterexample.
(a) True or False: If , then converges.
(b) True or False: If converges, then .
(c) True or False: The improper integral converges if and only if the series converges.
(d) True or False: The harmonic series converges.
(e) True or False: If , the series converges.
(f) True or False: If as , then converges.
(g) True or False: If converges, then as .
(h) True or False: If and is the sequence of partial sums for the series, then the sequence of remainders converges to .
Ifconverges, explain why we cannot draw any conclusions about the behavior of.
Use the divergence test to analyze the given series. Each answer should either be the series diverges or the divergence test fails, along with the reason for your answer.
What do you think about this solution?
We value your feedback to improve our textbook solutions.