Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

What is a difference between a Maclaurin polynomial and the Maclaurin series for a function f ?

Short Answer

Expert verified

FromMaclaurinseriesandMaclaurinpolynomial,aMaclaurinpolynomialofdegreenisapproximationtothefunctionfatx=0andthisapproximationofthefunctionfimprovesasthedegreeofthepolynomialincreases.Hence,theMaclaurinseriesatx0isthebestapproximationtothefunctionfatx=0ascomparedtoanyoftheMaclaurinpolynomial.

Step by step solution

01

Step 1. Given information is:

A function f with Maclaurin polynomial and the Maclaurin series

02

Step 2. Maclaurin polynomial 

Foranyfunctionfwithderivativesofallordersatthepointx0=0,thentheMaclurinpolynomialofdegreenis,f(x)=f(0)+f'(0)x+f''(0)2!x2+f'''(0)3!x3+....+fn(0)n!xnThegeneralformMaclurinpolynomialofdegreenofthefunctionfis:f(x)=k=0nfk(0)k!xk

03

Step 3. Maclaurin series 

Foranyfunctionfwithderivativesofallordersatthepointx0=0,thentheMaclurinseriesofdegreenis,f(x)=f(0)+f'(0)x+f''(0)2!x2+f'''(0)3!x3+....ThegeneralformMaclurinseriesofthefunctionfis:f(x)=n=0fn(0)n!xn

04

Step 4. Result

FromMaclaurinseriesandMaclaurinpolynomial,aMaclaurinpolynomialofdegreenisapproximationtothefunctionfatx=0andthisapproximationofthefunctionfimprovesasthedegreeofthepolynomialincreases.Hence,theMaclaurinseriesatx0isthebestapproximationtothefunctionfatx=0ascomparedtoanyoftheMaclaurinpolynomial.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free