Chapter 8: Q. 62 (page 702)
Use the results from Exercises 51–60 and Theorem 7.38 to approximate the values of the definite integrals in Exercises 61–70 to within 0.001 of their values.
Short Answer
The approximate value is.
Chapter 8: Q. 62 (page 702)
Use the results from Exercises 51–60 and Theorem 7.38 to approximate the values of the definite integrals in Exercises 61–70 to within 0.001 of their values.
The approximate value is.
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises 41–48 find the fourth Taylor polynomial for the specified function and the given value of
Find the interval of convergence for each power series in Exercises 21–48. If the interval of convergence is finite, be sure to analyze the convergence at the endpoints.
What is meant by the interval of convergence for a power series in ? How is the interval of convergence determined? If a power series in has a nontrivial interval of convergence, what types of intervals are possible.
How may we find the Maclaurin series for f(x)g(x) if we already know the Maclaurin series for the functions f(x) and g(x)? How do you find the interval of convergence for the new series?
In Exercises 49–56 find the Taylor series for the specified function and the given value of . Note: These are the same functions and values as in Exercises 41–48.
What do you think about this solution?
We value your feedback to improve our textbook solutions.