Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 41–48 find the fourth Taylor polynomial P4(x)for the specified function and the given value of x0.

48.sin3x,π6

Short Answer

Expert verified

The fourth Taylor polynomial of the functionsin3xatx=π6,P4(x)=192(xπ6)2+278(xπ6)4

Step by step solution

01

Step 1. Given data 

We have the given function f(x)=sin3xwith a derivative of order 4 atx=π6 .

02

Step 2. The fourth taylor polynomial 

The fourth taylor polynomial for x=π6is given by,

P4(x)=f(π6)+f(π6)(xπ6)+f′′(π6)2!(xπ6)2+f′′(π6)3!(xπ6)3+f′′′′(π6)4!(xπ6)4

Therefore, we have to find the value of the function along with f'(x),f''(x),f'''(x)and f''''(x)at x=π6.

The value of the function at x=π6is,

f(π6)=sin(3π6)=sin(π2)=1

03

Step 3. Find f'(x)

The derivatives of the function, f(x)=sin3x

f(x)=ddx[sin3x]=3cos3x

So, at x=π6

f(π6)=3cos(3π6)=3cos(π2)=30=0

04

Step 4. Find f"(x)

f′′(x)=ddx[3cos3x]=3ddx[cos3x]=3(3sin3x)=9sin3x

So, at x=π6

f′′(π6)=9sin(3π6)=9sin(π2)=91=9

05

Step 5. Find f'''(x)

f′′(x)=9ddx[sin3x]=9(3cos3x)=27cos3x

So, at x=π6

f′′(π6)=27cos(3π6)=27cos(π2)=270=0

06

Step 6. Find f''''(x) 

f′′′′(x)=ddx[27cos3x]=27ddx[cos3x]=27(3sin3x)=81sin3x

So, at x=π6

f′′′′(π6)=81sin(3π6)=81sin(π2)=811=81

07

Step 7. The fourth Taylor polynomial of the function  

Hence the fourth Taylor polynomial of the function f(x)=sin3xatπ6

P4(x)=1+0(xπ6)+(9)2!(xπ6)2+03!(xπ6)3+814!(xπ6)4=192!(xπ6)2+814!(xπ6)4=192(xπ6)2+278(xπ6)4

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free