Chapter 8: Q. 43 (page 692) URL copied to clipboard! Now share some education! In Exercises 41-48in Section 8.2, you were asked to find the fourth Taylor polynomial P4(x)for the specified function and the given value of x0. In Exercises 37-44give Lagrange's form for the remainder R4(x).tanx,π4 Short Answer Expert verified The required Lagrange's form is R4(x)=161+tan2x3+881+tan2x2tan2x+161+tan2xtan4x120x-π45 Step by step solution 01 Given Information Let us consider the functionf(x)=tanx 02 Derivatives The derivatives of the function f(x)=tanxare, f'(x)=ddx[tanx]=sec2xAlso,f''(x)=ddxsec2x=2secx·secxtanx=2sec2xtanxAgain,role="math" localid="1650292326399" f'''(x)=ddx2sec2xtanx=2ddxsec2xtanx=2sec2xddx[tanx]+tanxddxsec2x=2sec2x·sec2x+tanx·2secx·secxtanxImplies that,role="math" localid="1650292365914" f'''(x)=2sec4x+2sec2xtan2x=2sec4x+4sec2xtan2xAlso,role="math" localid="1650292381313" f''''(x)=ddx2sec4x+4sec2xtan2x=2ddxsec4x+4sec2xddxtan2x+4tan2xddxsec2x=2·4sec3x·secxtanx+4sec2x·2tanx·sec2x+4tan2x·2secx·secxtanx=8sec4xtanx+8sec4xtanx+8tan3xsec2xImplies that,f(4)(x)=16sec4xtanx+8tan3xsec2xFinally,f(5)(x)=ddx16sec4xtanx+8tan3xsec2x=16sec4xddx[tanx]+16tanxddxsec4x+8tan3xddxsec2x+8sec2xddxtan3x=16sec4x·sec2x+16tanx·4sec3x·secxtanx+8tan3x·2secx·secxtanx+8sec2x·3tan2x·sec2x=16sec6x+64sec4xtan2x+16sec2xtan4x+24sec4xtan2xImplies that,f(5)(x)=16sec6x+88sec4xtan2x+16sec2xtan4xOr,f(5)(x)=161+tan2x3+881+tan2x2tan2x+161+tan2xtan4x 03 Calculation Now, by the Lagrange's form for the remainder, if f is a function that can be differentiated n+1 times in some open interval Icontaining the point x0and Rn(x)be the nth remainder for fat x=x0. Then there exists at least one cbetween x0and xsuch thatRn(x)=f(n+1)(c)(n+1)!x-x0n+1Since f(5)(x)=161+tan2x3+881+tan2x2tan2x+161+tan2xtan4xand x0=π4thenR4(x)=f5(c)5!x-π45That is,R4(x)=161+tan2x3+881+tan2x2tan2x+161+tan2xtan4x120x-π45 Unlock Step-by-Step Solutions & Ace Your Exams! Full Textbook Solutions Get detailed explanations and key concepts Unlimited Al creation Al flashcards, explanations, exams and more... Ads-free access To over 500 millions flashcards Money-back guarantee We refund you if you fail your exam. Start your free trial Over 30 million students worldwide already upgrade their learning with Vaia!