Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let f(x)=ax3+bx2+cx+d, where a,b,c,and dare constants. Find the first- through fourth-order Taylor polynomials, P1(x),P2(x),P3(x),and P4(x), for fat x0. Explain why f(x)=P3(x)=P4(x).

Short Answer

Expert verified

The Taylor polynomials are,

P1(x)=ax03+bx02+cx0+d+(3ax02+2bx0+c)(x-x0)P2(x)=ax03+bx02+cx0+d+(3ax02+2bx0+c)(x-x0)+(6ax0+2b)(x-x0)2P3(x)=ax03+bx02+cx0+d+(3ax02+2bx0+c)(x-x0)+(6ax0+2b)(x-x0)2+6a(x-x0)3P4(x)=ax03+bx02+cx0+d+(3ax02+2bx0+c)(x-x0)+(6ax0+2b)(x-x0)2+6a(x-x0)3

Step by step solution

01

Step 1. Given Information.

The function is,

f(x)=ax3+bx2+cx+d.

02

Step 2. Describing the Taylor polynomial.

The first-, second, third-, and fourth-, order Taylor polynomials at x=x0that is, P1(x),P2(x),P3(x),P4(x)are given by,

role="math" localid="1649593059296" P1(x)=f(x0)+f'(x0)(x-x0)P2(x)=f(x0)+f'(x0)(x-x0)+f''(x0)2!(x-x0)2P3(x)=f(x0)+f'(x0)(x-x0)+f''(x0)2!(x-x0)2+f'''(x0)3!(x-x0)3P4(x)=f(x0)+f'(x0)(x-x0)+f''(x0)2!(x-x0)2+f'''(x0)3!(x-x0)3+f''''(x0)4!(x-x0)4

03

Step 3. Finding the Taylor polynomials.

Step 3. Finding the Taylor polynomials.

The value at x=x0is,

f(x0)=a(x0)3+b(x0)2+c(x0)+d=ax03+bx02+cx0+d

Finding the derivatives of the function,

f'(x)=d(ax3+bx2+cx+d)dx=3ax2+2bx+cf'(x0)=3a(x0)2+2b(x0)+c=3ax02+2bx0+c

Also,

f''(x)=d(3ax2+2bx+c)dx=6ax+2bf''(x0)=6a(x0)+2b=6ax0+2b

Also,

f'''(x)=d(6ax+2b)dx=6af'''(x0)=6a

Also,

f''''(x)=d(6a)dx=0f''''(x0)=0

Hence, the Taylor polynomials are,

localid="1649593442208" P1(x)=ax03+bx02+cx0+d+(3ax02+2bx0+c)(x-x0)P2(x)=ax03+bx02+cx0+d+(3ax02+2bx0+c)(x-x0)+(6ax0+2b)(x-x0)2P3(x)=ax03+bx02+cx0+d+(3ax02+2bx0+c)(x-x0)+(6ax0+2b)(x-x0)2+6a(x-x0)3P4(x)=ax03+bx02+cx0+d+(3ax02+2bx0+c)(x-x0)+(6ax0+2b)(x-x0)2+6a(x-x0)3

04

Step 4. Explanation.

Here, P3(x)=P4(x). This is because for any polynomial functionfof degreen, themthTaylor polynomial forf,Pm(x)=f(x)whenmn.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free