Chapter 9: Q 15. (page 756) URL copied to clipboard! Now share some education! The following integral expression may be used to find the area of a region in the polar coordinate plane: 12∫0π4sin2θdθ+12∫π4π2cos2θdθSketch the region and then compute its area. (If you prefer, you may use a simpler integral to compute the same area.) Short Answer Expert verified π8-14 Step by step solution 01 Given information 12∫0π4sin2θdθ+12∫π4π2cos2θdθ 02 Calculation Consider the integral, 12∫0π4sin2θdθ+12∫π4π2cos2θdθThe goal is to determine the integral's value.Take the integral, 12∫0π4sin2θdθ+12∫π4π2cos2θdθThen,12∫0π4sin2θdθ+12∫π4π2cos2θdθ=12∫0π41-cos2θ2dθ+12∫π4π21+cos2θ2dθsincecos2θ=1+cos2θ2,sin2θ=1-cos2θ212∫0π4sin2θdθ+12∫π4π2cos2θdθ=12∫0π412-cos2θ2dθ+12∫π4π212+cos2θ2dθsincecos2θ=1+cos2θ2,sin2θ=1-cos2θ212∫0π4sin2θdθ+12∫π4π2cos2θdθ=12∫0π412-cos2θ2dθ+12∫π4π212+cos2θ2dθ=12θ2-sin2θ2·20π4+12θ2+sin2θ2·2π4π2By applying the limits,12∫0π4sin2θdθ+12∫π4π2cos2θdθ=12π8-sin2·π42·2-0-sin2·02·2+12π4+sin2·π22·2-π8-sin2·π42·2=12π8-14-0-0+12π4+0-π8-14=12π8-14+π4-π8-14 03 Calculation Thus,12∫0π4sin2θdθ+12∫π4π2cos2θdθ=12π4-2412∫0π4sin2θdθ+12∫π4π2cos2θdθ=π8-14Therefore, the value of the integral is π8-14 04 Calculation The graphical representation is as follows.0This is the graphical representation. Unlock Step-by-Step Solutions & Ace Your Exams! Full Textbook Solutions Get detailed explanations and key concepts Unlimited Al creation Al flashcards, explanations, exams and more... Ads-free access To over 500 millions flashcards Money-back guarantee We refund you if you fail your exam. Start your free trial Over 30 million students worldwide already upgrade their learning with Vaia!