Chapter 13: Q.28 (page 991) URL copied to clipboard! Now share some education! Each of the integrals or integral expressions in Exercises 28 represents the area of a region in the plane. Use polar coordinates to sketch the region and evaluate the expressions.2∫02π/3∫0(1/2)+cosθrdrdθ-2∫π4π/3∫0(1/2)+cosθrdrdθ Short Answer Expert verified The value of the integral is2∫02π/3∫0(1/2)rcesθrdrdθ-2∫π4π/3∫0(1/2)cosθrdrdθ=π12 Step by step solution 01 Given information The expression is2∫02π/3∫0(1/2)+cosθrdrdθ-2∫π4π/3∫0(1/2)+cosθrdrdθ 02 Simplification Here, r=0,r=(1/2)+cosθand θ=0,θ=2π/3,θ=πand θ=4π/3θr=(1/2)+cosθ01.5π/41.2071π/20.53π/4-0.2071π-0.55π/4-0.20714π/30To sketch the region use the above tablePlot of r=(1/2)+cosθI=2∫02π/3∫0(1/2)+cosθrdrdθ-2∫π4π/3∫0(1/2)+senθrdrdθI=I1-I2Where,I1=2∫02π/3∫0(1/2)+eosθrdrdθI1=2∫02π/3r220(1/2)+cosθdθI1=2∫02π/3{(1/2)+cosθ}2-02dθI1=2∫02π/314+cosθ+cos2θ2θI1=2∫02π/314+cosθ+12(1+cos2θ)2dθIntegrate with respect to θ.I1=2θ4+sinθ+12θ+12sin2θ202π/3I1=234·2π3+sin2π3+14sin4π3-{0}2I1=2π2+32-382I1=2π2+3382I1=π2+338NowI2=2∫π4π/3∫0(1/2)+cosθrdrdθI2=2∫π4π/3r220(1/2)+cosθdθI2=2∫n4π/314+cosθ+cos2θ2dθI2=2∫n4π/314+cosθ+12(1+cos2θ)2dθI2=2θ4+sinθ+12θ+12sin2θ2n4nI2=214·4π3+sin4π3+14sin8π3-π4+sinπ+12π+12sin2π2I2=2π3-32+14,32-π4+π22I2=2π3-32+14·32-π4+π22I2=-5π12-338Therefore,I=π2+338-5π12-338I=π12Thus, the value of integral is2∫02π/3∫0(1/2)+cesθrdrdθ-2∫π4π/3∫0(1/2)resθrdrdθ=π12 Unlock Step-by-Step Solutions & Ace Your Exams! Full Textbook Solutions Get detailed explanations and key concepts Unlimited Al creation Al flashcards, explanations, exams and more... Ads-free access To over 500 millions flashcards Money-back guarantee We refund you if you fail your exam. Start your free trial Over 30 million students worldwide already upgrade their learning with Vaia!