Chapter 13: Q 9 (page 1065)
. To convert from rectangular to spherical coordinates
Chapter 13: Q 9 (page 1065)
. To convert from rectangular to spherical coordinates
All the tools & learning materials you need for study success - in one app.
Get started for freeExplain how to construct a midpoint Riemann sum for a function of three variables over a rectangular solid for which each is the midpoint of the subsolid role="math" localid="1650346869585" . Refer either to your answer to Exercise or to Definition .
State Fubini's theorem.
Use the results of Exercises 59 and 60 to find the centers of masses of the laminæ in Exercises 61–67.
In the following lamina, all angles are right angles and the density is constant:
Describe the three-dimensional region expressed in each iterated integral in Exercises 35–44.
In Exercises 61–64, let R be the rectangular solid defined by
Assume that the density of R is uniform throughout.
(a) Without using calculus, explain why the center of
mass is
(b) Verify that is the center of mass by using the appropriate integral expressions.
What do you think about this solution?
We value your feedback to improve our textbook solutions.