Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let f(x)be an integrable function on the rectangular solid R=x,y,z|a1xa2,b1yb2,c1zc2, and let κ.Use the definition of the triple integral to prove that:

Rκf(x,y,z)dV=κRf(x,y,z)dV.

Short Answer

Expert verified

Rf(x,y,z)dV=lim0i=1lj=1mk=1nf(xi*,yj*,zk*)dV.Replaceκf(x,y,z)withf(x,y,z)weget,Rκf(x,y,z)dV=κlim0i=1lj=1mk=1nf(xi*,yj*,zk*)dV=κRf(x,y,z)dVTherefore,Rκf(x,y,z)dV=κRf(x,y,z)dV.

Step by step solution

01

Step 1. Given Information.

Given:R=x,y,z|a1xa2,b1yb2,c1zc2andκ.

02

Step 2. Proof.

Asweknowfromthedefinitionoftripleintegrals:Rf(x,y,z)dV=lim0i=1lj=1mk=1nf(xi*,yj*,zk*)dV.Replaceκf(x,y,z)withf(x,y,z)inabove,Rκf(x,y,z)dV=lim0i=1lj=1mk=1nκf(xi*,yj*,zk*)dVAsweknowtheconstantsgetoutfromsummationsandlimitsweget,Rκf(x,y,z)dV=κlim0i=1lj=1mk=1nf(xi*,yj*,zk*)dV=κlim0i=1lj=1mk=1nf(xi*,yj*,zk*)dV=κRf(x,y,z)dVTherefore,Rκf(x,y,z)dV=κRf(x,y,z)dV.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free