Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Evaluate the triple integrals over the specified rectangular solid region.

Rlnxyz2dV, whereR={(x,y,z)1x3,1ye,and1z2}

Short Answer

Expert verified

Rlnxyz2dV=(e1)[3In3+8In26]+2

Step by step solution

01

Step 1. Given information.

We have been given the triple integral:

Rlnxyz2dV, whereR={(x,y,z)1x3,1ye,and1z2}

We have to evaluate this over the specified rectangular solid regions.

02

Step 2. Evaluate.

By Fubini's theorem of triple integral :

RInxyz2dv=131e12Inxyz2dzdydx=131e12(Inx+Iny+2Inz)dzdydx=131e12(Inx+Iny+2Inz)dzdydx=131eInx12dz+Iny12dz+212Inzdzdydx=131eInx(z)12+Iny(z)12+2(zInzz)12dydx=121e[Inx(21)+Iny(21)+2(2In221ln1+1)]dydx

03

Step 3. Integrate with respect to y.

Integrate with respect to y

=121e(Inx+Iny+2(2In21)]dydx=12Inx1edy+1eInydy+2(2In21)1edydx=12Inx(y)1e+(yInyy)1e+2(2In21)(y)1edx=12[Inx(e1)+(eInee+1)+2(2In21)(e1)]dx

Since lne=1,ln1=0

localid="1650348241491" =(e1)13Inxdx+13dx+2(2In21)(e1)13dx=(e1)[xInxx]13+(x)13+2(2In21)(e1)[x]13=(e1)[3In33+1]+(31)+2(2In21)(e1)(31)=(e1)[3In32]+2+4(2In21)(e1)=(e1)[3In32+8In24]+2=(e1)[3In3+8In26]+2

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free