Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use Definition 13.4to evaluate the double integrals in Exercises 2932.

localid="1649936867482" xx2ydA

whereR={(x,y)1x3and0y2}

Short Answer

Expert verified

The value of integral is23

Step by step solution

01

Step 1. Given information

An integral is given asπx2y3dA

02

Step 2. Evaluating integral

The double integration can be written as

Rf(x,y)dA=limΔ0j=1mk=1nfxj*,yk*ΔA=limΔ0k=1nj=1mfxj*,yk*ΔA

where

xj=a+jΔxyk=b+kΔyΔA=Δx×ΔyΔx=b-amΔy=d-cn

The starred points xj*,yi*choose points xj,yk=(-1+jΔx,0+kΔy)=(-1+jΔx,kΔy) for each j and k.

localid="1649936602006" Rf(x,y)dA=limΔ0j=1mk=1n(-1+jΔx)2(kΔy)ΔAj=1mk=1n(-1+jΔx)2(kΔy)ΔA=j=1m(-1+jΔx)2ΔAk=1n(kΔy)=j=1m(-1+jΔx)2ΔAΔyk=1nk=j=1m(-1+jΔx)2ΔAΔyn(n+1)2=Δyn(n+1)2ΔAj=1m(-1+jΔx)2

=Δyn(n+1)2ΔAj=1m1-2jΔx+j2(Δx)2=Δyn(n+1)2ΔAj=1m(1)-j=1m(2jΔx)+j=1mj2(Δx)2=Δyn(n+1)2ΔAj=1m(1)-2Δxj=1m(j)+(Δx)2j=1mj2=Δyn(n+1)2ΔAm-2Δxm(m+1)2+(Δx)2m(m+1)(2m+1)6=Δyn(n+1)2m-2Δxm(m+1)2+(Δx)2m(m+1)(2m+1)6ΔA

Δx=b-am=0-(-1)m=1mΔy=d-cn=2-0n=2nΔA=Δx×Δy=1m×2n=2mnj=1mk=1m(1+jΔx)2(kΔy)ΔA=Δyn(n+1)2m-2Δxm(m+1)2+(Δx)2m(m+1)(2m+1)6ΔA=2nn(n+1)2m-21mm(m+1)2+1m2m(m+1)(2m+1)62mn=21n2nn(n+1)2m1m-21mm(m+1)21m+1m2m(m+1)(2m+1)61m=2(n+1)n1-2(m+1)m+23(m+1)(2m+1)m2

Rf(x,y)dA=limΔ0j=1mk=1n(1+jΔx)2(kΔy)ΔA=limΔ02(n+1)n1-2(m+1)m+23(m+1)(2m+1)m2=limmlimn2(n+1)n1-2(m+1)m+23(m+1)(2m+1)m2=2limmlimn(n+1)n1-2(m+1)m+23(m+1)(2m+1)m2=2limm1×1-2(m+1)m+23(m+1)(2m+1)m2=2limm1-limm2(m+1)m+limm23(m+1)(2m+1)m2=21-2×1+23×2=21-2+43=23-6+43=2(13)=23

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free