Chapter 2: Q no. 1 (page 183)
True/False: Determine whether each of the statements that follow is true or false. If a statement is true, explain why. If a statement is false, provide a counterexample.
(a) True or False: \(f^{\prime}(x)=\frac{f(x+h)-f(x)}{h}\).
(b) True or False: \(f^{\prime}(x)=\lim _{x \rightarrow 0} \frac{f(x+h)-f(x)}{h}\).
(c) True or False: \(f^{\prime}(x)=\lim _{z \rightarrow 0} \frac{f(z)-f(x)}{z-x}\).
(d) True or False: If \(f(x)=x^{3}\), then \(f(x+h)=x^{3}+h\).
(e) True or False: If \(f(x)=x^{3}\), then \(f^{\prime}(x)=\) \(\lim _{h \rightarrow 0} \frac{f\left(x^{3}+h\right)-f(x)}{h}\)
(f) True or False: A function \(f\) is differentiable at \(x=c\) if and only if \(f_{-}^{\prime}(c)\) and \(f_{+}^{\prime}(c)\) both exist.
(g) True or False: If \(f\) is continuous at \(x=c\), then \(f\) is differentiable at \(x=c\).
(h) True or False: If \(f\) is not continuous at \(x=c\), then \(f\) is not differentiable at \(x=c\)
Short Answer
(a). False
(b). True
(c). False
(d). False
(e). False
(f). False
(g). False
(h). True