Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Considerthegraphofthesolutionsoftheequationy33yx=1.(a)Findallpointsonthegraphwithanx-coordinateofx=1,andthenfindtheslopeofthetangentlineateachofthesepoints.(b)Findallpointsonthegraphwithay-coordinateofy=2,andthenfindtheslopeofthetangentlineateachofthesepoints.(c)Findallpointswherethegraphhasahorizontaltangentline.(d)Findallpointswherethegraphhasaverticaltangentline.

Short Answer

Expert verified

(a).Thepointsare:(-1,0),(-1,3),(-1,-3).(b).Thepointis(1,2).(c).Thepointsare:(0,1),(0,2),(0,-2).(d).Thepointis:(-1,0).

Step by step solution

01

Step 1. Given Information 

Equation:y3-3y-x=1

02

Step 2. Solution (a) : The points on the graph with x coordinate of x = -1.

Considertheequation:y3-3y-x=1Differentiateaboveequation:3y2dydx-3dydx-1=0dydx=13y2-3.Substitutex=-1inaboveequationy3-3y-(-1)=1y=0,±3Thusthepointsare:(-1,0),(-1,3),(-1,-3)Theslopeis,dydxx=-1,y=0=13(0)2-3=-13Theslopeis,dydxx=-1,y=3=13(3)2-3=16Theslopeis,dydxx=-1,y=-3=13(-3)2-3=16

03

Step 3. Solution (b) : The points on the graph with y-coordinate of y =2.

Considertheequation:y3-3y-x=1Differentiateaboveequation:3y2dydx-3dydx-1=0dydx=13y2-3.Substitutey=2inaboveequation(2)3-3(2)-x=1x=1Thusthepointis(1,2)Thusslopeis,dydxx=1,y=2=13(2)2-3=19

04

Step 4. Solution (c) : The points where the tanget line is horizontal.

Considertheequation:y3-3y-x=1Substitutex=0inaboveequationy3-3y-(0)=1y=1,±2Thusthepointsare:(0,1),(0,2),(0,-2).

05

Step 5. Solution (d) : The points where tangent line is vertical

Considertheequation:y3-3y-x=1Substitutey=0inaboveequation(0)3-3(0)-x=1x=-1Thusthepointsare:(-1,0)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free