Chapter 2: Q. 53 (page 222)
Use logarithmic differentiation to find the derivatives of each of the functions in Exercises 49–58.
Short Answer
The derivative of function is
Chapter 2: Q. 53 (page 222)
Use logarithmic differentiation to find the derivatives of each of the functions in Exercises 49–58.
The derivative of function is
All the tools & learning materials you need for study success - in one app.
Get started for freeStuart left his house at noon and walked north on Pine Street for minutes. At that point he realized he was late for an appointment at the dentist, whose office was located south of Stuart’s house on Pine Street; fearing he would be late, Stuart sprinted south on Pine Street, past his house, and on to the dentist’s office. When he got there, he found the office closed for lunch; he was minutes early for his appointment. Stuart waited at the office for minutes and then found out that his appointment was actually for the next day, so he walked back to his house. Sketch a graph that describes Stuart’s position over time. Then sketch a graph that describes Stuart’s velocity over time.
A bowling ball dropped from a height of feet will be feet from the ground after seconds. Use a sequence of average velocities to estimate the instantaneous velocities described below:
When the bowling ball is first dropped, with
Use the definition of the derivative to find for each function in Exercises 39-54.
For each function and interval in Exercises , use the Intermediate Value Theorem to argue that the function must have at least one real root on . Then apply Newton’s method to approximate that root.
localid="1648369345806" .
Find the derivatives of the functions in Exercises 21–46. Keep in mind that it may be convenient to do some preliminary algebra before differentiating.
What do you think about this solution?
We value your feedback to improve our textbook solutions.