Chapter 2: Q. 5 (page 183)
Explain why the limitsandare the same for any function . (Hint: Consider the substitution .)
Short Answer
and are the same for any function.
Chapter 2: Q. 5 (page 183)
Explain why the limitsandare the same for any function . (Hint: Consider the substitution .)
and are the same for any function.
All the tools & learning materials you need for study success - in one app.
Get started for freeEach graph in Exercises 31–34 can be thought of as the associated slope function f' for some unknown function f. In each case sketch a possible graph of f.
Last night Phil went jogging along Main Street. His distance from the post office t minutes after p.m. is shown in the preceding graph at the right.
(a) Give a narrative (that matches the graph) of what Phil did on his jog.
(b) Sketch a graph that represents Phil’s instantaneous velocity t minutes after p.m. Make sure you label the tick marks on the vertical axis as accurately as you can.
(c) When was Phil jogging the fastest? The slowest? When was he the farthest away from the post office? The closest to the post office?
Velocity is the derivative of position . It is also true that acceleration (the rate of change of velocity) is the derivative of velocity. If a race car’s position in miles t hours after the start of a race is given by the function , what are the units of ? What are the units and real-world interpretation of ? What are the units and real-world interpretations of ?
Use the definition of the derivative to find for each function in Exercises 39-54.
Find the derivatives of the functions in Exercises 21–46. Keep in mind that it may be convenient to do some preliminary algebra before differentiating.
What do you think about this solution?
We value your feedback to improve our textbook solutions.