Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the derivatives of each of the functions in Exercises 17–50. In some cases it may be convenient to do some preliminary algebra

f(x)=lnarcsecsin2x

Short Answer

Expert verified

The derivative is2sinxcosxarcsecsin2x1sin2xsin4x-1.

Step by step solution

01

Step 1. Given Information.

The given function is,

f(x)=lnarcsecsin2x.

02

Step 2. Preliminary Algebra.

ChainRule:(fu)'(x)=f'(u(x))u'(x)ddxsec-1x=1|x|x2-1ddx(sinx)=cosxWe know,

03

Step 3. Derivative of the function.

The derivative of the function is,

ddxlnarcsecsin2x=1arcsecsin2xddxarcsecsin2x=1arcsecsin2x1sin2xsin2x2-1ddxsin2x=1arcsecsin2x1sin2xsin4x-1(2sinx)ddx(sinx)=1arcsecsin2x1sin2xsin4x-1(2sinxcosx)

=2sinxcosxarcsecsin2x1sin2xsin4x-1

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free