Chapter 2: Q. 31 (page 184)
Use (a) the h→0 definition of the derivative and then (b) the z→c definition of the derivative to find f'(c) for each function f and value x = c.
Short Answer
(a)
(b)
Chapter 2: Q. 31 (page 184)
Use (a) the h→0 definition of the derivative and then (b) the z→c definition of the derivative to find f'(c) for each function f and value x = c.
(a)
(b)
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the derivatives of the functions in Exercises 21–46. Keep in mind that it may be convenient to do some preliminary algebra before differentiating.
On earth, A falling object has a downward acceleration of 32 feet per second per second due to gravity. Suppose an object falls from an initial height of ,With an initial velocity of feet per second, Use antiderivatives to show that the equations for the position and velocity of the object after t seconds are respectively and
Find the derivatives of the functions in Exercises 21–46. Keep in mind that it may be convenient to do some preliminary algebra before differentiating.
In Exercises 69–80, determine whether or not f is continuous and/or differentiable at the given value of x. If not, determine any left or right continuity or differentiability. For the last four functions, use graphs instead of the definition of the derivative.
Taking the limit: We have seen that if f is a smooth function, then This approximation should get better as h gets closer to zero. In fact, in the next section we will define the derivative in terms of such a limit.
.
Use the limit just defined to calculate the exact slope of the tangent line toat
What do you think about this solution?
We value your feedback to improve our textbook solutions.