Chapter 2: Q. 30 (page 184)
Use (a) the h→0 definition of the derivative and then (b) the z→c definition of the derivative to find f'(c) for each function f and value x = c.
Short Answer
(a)
(b)
Chapter 2: Q. 30 (page 184)
Use (a) the h→0 definition of the derivative and then (b) the z→c definition of the derivative to find f'(c) for each function f and value x = c.
(a)
(b)
All the tools & learning materials you need for study success - in one app.
Get started for freeUse the definition of the derivative to find the equations of the lines described in Exercises 59-64.
The line that passes through the point and is parallel to the tangent line to at .
Think about what you did today and how far north you were from your house or dorm throughout the day. Sketch a graph that represents your distance north from your house or dorm over the course of the day, and explain how the graph reflects what you did today. Then sketch a graph of your velocity.
Find a function that has the given derivative and value. In each case you can find the answer with an educated guess and check process it may be helpful to do some preliminary algebra
use the definition of the derivative to prove the quotient rule
If Katie walked at miles per hour for minutes and then sprinted at miles an hour for minutes, how fast would Dave have to walk or run to go the same distance as Katie did at the same time while moving at a constant speed? Sketch a graph of Katie’s position over time and a graph of Dave’s position over time on the same set of axes.
What do you think about this solution?
We value your feedback to improve our textbook solutions.