Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Show that each of the following limits is of the form 00and then use L’Hopital’s rule to calculate the limit: ˆ

limx0x31-2x

Short Answer

Expert verified

Hence the solution is6-log2log2log2

Step by step solution

01

Step 1. Given information

The given information islimx0x31-2x

02

Step 2. Calculate the limit

limx0x31-2xlimx0dx3dxd1-2xdx=limx03x2-2xlog2limx0d3x2dxd-2xlog2dx=limx06x-2xlog2log2limx0d6xdxd-2xlog2log2dx=limx06-2xlog2log2log2=6-log2log2log2

03

Step 3. The solution

The solution is6-log2log2log2

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Every morning Linda takes a thirty-minute jog in Central Park. Suppose her distance s in feet from the oak tree on the north side of the park tminutes after she begins her jog is given by the function s(t)shown that follows at the left, and suppose she jogs on a straight path leading into the park from the oak tree.

(a) What was the average rate of change of Linda’s distance from the oak tree over the entire thirty-minute jog? What does this mean in real-world terms?

(b) On which ten-minute interval was the average rate of change of Linda’s distance from the oak tree the greatest: the first 10minutes, the second 10minutes, or the last10minutes?

(c) Use the graph of s(t)to estimate Linda’s average velocity during the 5-minute interval fromt=5tot=10. What does the sign of this average velocity tell you in real-world terms?

(d) Approximate the times at which Linda’s (instantaneous) velocity was equal to zero. What is the physical significance of these times?

(e) Approximate the time intervals during Linda’s jog that her (instantaneous) velocity was negative. What does a negative velocity mean in terms of this physical example?

Use the definition of the derivative to find the equations of the lines described in Exercises 59-64.

The line that passes through the point (3,2)and is parallel to the tangent line to f(x)=1x at x=-1.

Find the derivatives of the functions in Exercises 21–46. Keep in mind that it may be convenient to do some preliminary algebra before differentiating.

f(x)=53x4-13+3x-1100

Use (a) the h0definition of the derivative and then

(b) the zcdefinition of the derivative to find f'(c)for each function f and value x=c in Exercises 23–38.

23.f(x)=x2,x=-3

Think about what you did today and how far north you were from your house or dorm throughout the day. Sketch a graph that represents your distance north from your house or dorm over the course of the day, and explain how the graph reflects what you did today. Then sketch a graph of your velocity.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free