Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Prove that the Net Change Theorem (Theorem 4.27) is equivalent to the Fundamental Theorem of Calculus.

Short Answer

Expert verified

Ans:abf(x)dx=limnk=1nFxk-Fxk-1=limnF(b)-F(a)=F(b)-F(a)

Step by step solution

01

Step 1. Given Information: 

The objective is to prove the Fundamental Theorem of Calculus.

Let, fbe a continuous function on [a,b]and F be any anti-derivative of f.

02

Step 2. Proving with the help of the limit of Reimann sum :

So, the definite integral from x=ato x=bdefined by a limit of Reimann sum is,

abf(x)dx=limnk=1nf(x°k)x=limnk=1nF'(x°k)x[F'=f]Where,foreachn,x=b-an,xk=a+kxandx°kisapointonthesubinterval[xk+1,xk]NOwapplyingtheMeanValueTheoremtoFon[a,b]=[xk+1,xk]suchthatthereexistssomepointsck[xk+1,xk]suchthat,F'ck=Fxk-Fxk-1xk-xk-1

03

Step 3. Substituting the above expression for F'(x°k) in the Reimann sum:

abf(x)dx=limnk=1nF'(xk*)Δx=limnk=1n(F(xk)-F(xk-1)(xk-xk-1Δx=(F(x1)-F(x0))+(F(x2)-F(x1))++(F(x(n-1))-F(x(n-2)))+(F(xn)-F(x(n-1)))=-F(x0)+(F(x1)-F(x1))+(F(x2)-F(x2))+(F(x(n-1))-F(x(n-1)))+F(xn)=-F(x0)+0+0+0+F(xn)=F(b)-F(a)

04

Step 4. Differentiation of the Net change theorem :

TheNetchangetheoremforthefunctionfwhichisdifferentiableon[a,b]is,abf'(x)dx=f(b)-f(a)abf(x)dx=limnk=1nFxk-Fxk-1=limnF(b)-F(a)=F(b)-F(a)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free