Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Prove sinxdx=-cosxdx+Cusingdifferentiationformulas(b)cosxdx=sinxdx+Cusingdifferentiationformulas(c)sec2xdx=tanxdx+Cusingdifferentiationformulas(d)cosec2xdx=-cotxdx+Cusingdifferentiationformulas(e)secxtanxdx=secxdx+Cusingdifferentiationformulas(f)cosecxcotxdx=-cosecxdx+Cusingdifferentiationformulas

Short Answer

Expert verified

Hence proved

Step by step solution

01

Step 1. To prove

(a)sinxdx=-cosxdx+Cusingdifferentiationformulas(b)cosxdx=sinxdx+Cusingdifferentiationformulas(c)sec2xdx=tanxdx+Cusingdifferentiationformulas(d)cosec2xdx=-cotxdx+Cusingdifferentiationformulas(e)secxtanxdx=secxdx+Cusingdifferentiationformulas(f)cosecxcotxdx=-cosecxdx+Cusingdifferentiationformulas

02

Part(a) Step 2. Proving part a

(a)sinxdx=-cosxdx+Cusingdifferentiationformulasddx-cosx=sinxso-cosxisantiderivativeofsinxhenceprovedsinxdx=-cosxdx+C

03

Part (b) Step 3. Proving

(b)cosxdx=sinxdx+Cusingdifferentiationformulasddxsinx=cosxso-cosxisantiderivativeofcosxhenceprovedcosxdx=sinxdx+C

04

Part (c) Step 4. Proving 

(c)sec2xdx=tanxdx+Cusingdifferentiationformulasddxsec2x=tanxsosec2xisantiderivativeoftanxhenceprovedsec2xdx=tanxdx+C

05

Part (d) Step 5. Proving

(d)cosec2xdx=-cotxdx+Cusingdifferentiationformulasddxcosec2x=cotxsocosec2xisantiderivativeofcotxhenceprovedcosec2xdx=-cotxdx+C

06

Part(e) Step 6. Proving

(e)secxtanxdx=secxdx+Cusingdifferentiationformulasddxsecxtanx=secxsosecxtanxisantiderivativeofsecxhenceprovedcosec2xdx=-cotxdx+C

07

Part (f)Step 7. Proving

(f)cosecxcotxdx=-cotxdx+Cusingdifferentiationformulasddxcosecxcotx=-cotxsocosecxcotxisantiderivativeof-cotxhenceprovedcosecxcotxdx=-cotxdx+C

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free