Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

As n approaches infinity this sequence of partial sums could either converge meaning that the terms eventually approach some finite limit or it could diverge to infinity meaning that the terms eventually grow without bound. which do you think is the case here and why?

Short Answer

Expert verified

The sequence is convergent.

Step by step solution

01

Given information

We are given a sequence we are asked whether it is convergent or divergent.

02

Explanation

As the value of n increases the difference between two consecutive terms is decreasing for a very large n the difference between two consecutive terms is so small that we can neglect it After that we get the same value even for an increasing value of n Hence we say that the sequence is convergent. And here is the case of convergent.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free