Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Supposeyoudriveonaracetrackfor10minuteswithvelocityasshowninthegraphattheright.(a)Describeinwordsthebehaviorofyourracecaroverthe10minutesasshowninthegraph.(b)Findapiecewise-definedformulaforyourvelocityv(t),inmilesperhour,thoursafteryoustartfromrest.(Notethat1minuteis160ofanhour.)(c)Approximatethedistanceyoutravelledoverthe10minutesbyusing10subintervalsof1minuteoverwhichyouassumeaconstantvelocity.Illustratethisapproximationbyshowingrectanglesonthegraphofv(t).(d)Giventhatdistancetravelledistheareaunderthevelocitygraph,usetrianglesandsquarestocalculatetheexactdistancetravelled.

Short Answer

Expert verified

(a).Thevelocityofcarincreasesduring0-2minutes,remainsconstantduring2-9minutesandstartsdecreasingduring9-10minutes.Thecarfinallystopsafter10thminute.(b).Thepiecewisedefinedformulaforv(t)=(0-10088=2522)mph,0t<130(2522)mph,130t<320(2522-0)mph,320t<16(c).Thetotaldistancetravelledbyracingcarin10minutesis850ft.(d).Thetotaldistancetravelledbyracingcarin10minutesis850ft.

Step by step solution

01

Step 1. Given Information 

time = 10 minutes

02

Step 2. Solution (a) : Behavior of race car over 10 minutes.

Weknowthat,slopeofvelocity-timegraphrepresentsaccelerationofanobjectTherefore,For0t<2:a=(100-0)ft/min(2-0)min=+50ft/min2.asaccelerationispositive,thereforevelocityofcarincreasesintimeinterval0-2min.For2t<9:a=(100-100)ft/min(9-2)min=0ft/min2.asaccelerationiszero,thereforevelocityremainsconstantintimeinterval2-9min.For9t<10:a=(0-100)ft/min(10-9)min=-100ft/min2.asaccelerationisnegative,thereforevelcityofcardecreasesintimeinterval9-10minandcarfinallystopsafter10thmin.

03

Step 3. Solution (b) : Piecewise-defined formula for velocity v(t) in miles per hour starting from rest

v(t)(ft/min)=v(t)×188miles/houras1mph=88ft./minContinuoustimeintervalsusedare:0t<2,2t<9,9t<10.Hence,thepiecewisedefinedformulaforv(t)=(0-10088=2522)mph,0t<130(2522)mph,130t<320(2522-0)mph,320t<16

04

Step 4. Solution (c) : Finding appx. distance in 10 minutes by using 10 subintervals in 1 minute over which we assume velocity constant.

Formulaused:distance=velocity×time.Fortimeinterval0to2minutestheconstantvelocityisequaltotheaveragevelocityv(0-2)=(0+100)ft/min2=50ft/min.Therefore,thedistancetravelledforfirsttwominutesofjourneyisd(0-2)=50ftminx2min=100ft.......(1)Fortimeinterval2to9minutestheconstantvelocityisv(2-9)100ft/min.Therefore,thedistancetravelledin2to9minutesofjourneyminutesisd(2-9)=100ftmin×(9-2)min=700ft......(2)Fortimeinterval9to10minutestheconstantvelocityisequaltotheaveragevelocityv(9-10)=(0+100)ft/min2=50ft/min.Therefore,thedistancetravelledinlast1minuteofjourneyisd(9-10)=50ftminx1min=50ft.....(3)Thetotaldistancetravelledbyracingcarisd=d(0-2)+d(2-9)+d(9-10)=(100+700+50)ft=850ft.Thedivisionoftime10minutesin10subinervalsisshowninfigurehere.

05

Step 5. Solution (d) : Distance travelled as the area of velocity-time graph

Areaofatriangle=12×base×height,andtheareaofarectangle=Length×breadth.Calculation:Fromthevelocity-timegraphgiveninpart(a)ofracingcar,therearetwotrianglesandonerectangle.Thetotaldistancetravelledbycaristhesumoftheareaoftwotrianglesandonerectangle.Now,thedistancetravelledforfirsttwominutesisequaltotheareaOA2,i.e.d(0-2)=OA2=12×(2-0)×100=100ft.Thedistancetravelledin2to9minutesofjourneyminutesisareaofrectangle2AB92d(2-9)=2AB92=100x(9-2)=700ft.Thedistancetravelledlastminuteofjoumeyisequaltothearea9B10,ie.d(9-10)=9B10=12×(10-9)×100=50ft.Hence,thetotaldistancetravelledbyracingcarisd(0-2)+d(2-9)+d(9-10)=850ft.Therefore,thetotaldistancetravelledbyracingcaris850ft.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider the region between f and g on [0, 4] as in the

graph next at the left. (a) Draw the rectangles of the left-

sum approximation for the area of this region, with n = 8.

Then (b) express the area of the region with definite

integrals that do not involve absolute values.

Given a simple proof thatk=0n3ak=3k=0nak

Use the Fundamental Theorem of Calculus to find the exact values of the given definite integrals. Use a graph to check your answer.

24143xdx

Determine whether each of the statements that follow is true or false. If a statement is true, explain why. If a statement is false, provide a counterexample.

(a) True or False: The absolute area between the graph of f and the x-axis on [a, b] is equal to|abf(x)dx|.

(b) True or False: The area of the region between f(x) = x − 4 and g(x) = -x2on the interval [−3, 3] is negative.

(c) True or False: The signed area between the graph of f on [a, b] is always less than or equal to the absolute area on the same interval.

(d) True or False: The area between any two graphs f and g on an interval [a, b] is given by ab(f(x)-g(x))dx.

(e) True or False: The average value of the function f(x) = x2-3 on [2, 6] is

f(6)+f(2)2= 33+12= 17.

(f) True or False: The average value of the function f(x) = x2-3on [2, 6] is f(6)-f(2)4= 33-14= 8.

(g) True or False: The average value of f on [1, 5] is equal to the average of the average value of f on [1, 2] and the average value of f on [2, 5].

(h) True or False: The average value of f on [1, 5] is equal to the average of the average value of f on [1, 3] and the average value of f on [3, 5].

If f is negative on [−3, 2], is the definite integral -32f(x)dx positive or negative? What about the definite integral − -32f(x)dx?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free