Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Combining derivatives and integrals: Simplify each of the following as much as possible:

ddx0lnxsin3tdt

Short Answer

Expert verified

The solution isddx0lnxsin3tdt=34x(sin(lnx)-13sin3(lnx)).

Step by step solution

01

Step 1. Given information

Integral:ddx0lnxsin3tdt

02

Step 2. Calculation

The given equation is-

ddx0lnxsin3tdt

Using sin3x=34sinx-14sin3x

ddx0lnxsin3tdt=ddx0lnx(34sint-14sin3t)dtddx0lnxsin3tdt=ddx(340lnx(sint)dt-140lnx(sin3t)dt)Usingsinxdx=-cosx+Cddx0lnxsin3tdt=ddx(34[-cost]0lnx-14[-13cos3t]0lnx) ddx0lnxsin3tdt=ddx(-34[cos(lnx)-cos0]+112[cos3(lnx)-cos0])ddx0lnxsin3tdt=(-34ddx[cos(lnx)-1]+112ddx[cos3(lnx)-1])Usingddxcosx=-sinxddx0lnxsin3tdt=(-34[-sin(lnx)ddxlnx-0]+112[-sin3(lnx)ddx3lnx])ddx0lnxsin3tdt=(34[sin(lnx)x]-312[sin(lnx)x])ddx0lnxsin3tdt=34x(sin(lnx)-13sin3(lnx))

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free