Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

For each pair of functions f and g and interval[a,b] in Exercises 41–52, use definite integrals and the Fundamental Theorem of Calculus to find the exact area of the region between the graphs of f and g from x=aandx=b.

f(x)=x2,g(x)=x+2,[-2,2]

Short Answer

Expert verified

The exact area is386.

Step by step solution

01

Step 1. Given information.

The given functions and interval isf(x)=x2,g(x)=x+2,[-2,2].

02

Step 2. Graph of the functions.

The graph of the function is,

03

Sep 3. Required Area.

The required exact area is,

-22|f(x)-g(x)|dx=-2-1(f(x)-g(x))dx+-12(g(x)-f(x))dx=-2-1x2-x-2dx+-12x+2-x2dx=x33-x22-2x-2-1+2x+x22-x33-12=386

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Determine whether each of the statements that follow is true or false. If a statement is true, explain why. If a statement is false, provide a counterexample.

(a) True or False: The absolute area between the graph of f and the x-axis on [a, b] is equal to|abf(x)dx|.

(b) True or False: The area of the region between f(x) = x − 4 and g(x) = -x2on the interval [−3, 3] is negative.

(c) True or False: The signed area between the graph of f on [a, b] is always less than or equal to the absolute area on the same interval.

(d) True or False: The area between any two graphs f and g on an interval [a, b] is given by ab(f(x)-g(x))dx.

(e) True or False: The average value of the function f(x) = x2-3 on [2, 6] is

f(6)+f(2)2= 33+12= 17.

(f) True or False: The average value of the function f(x) = x2-3on [2, 6] is f(6)-f(2)4= 33-14= 8.

(g) True or False: The average value of f on [1, 5] is equal to the average of the average value of f on [1, 2] and the average value of f on [2, 5].

(h) True or False: The average value of f on [1, 5] is equal to the average of the average value of f on [1, 3] and the average value of f on [3, 5].

Use integration formulas to solve each integral in Exercises 21–62. You may have to use algebra, educated guess- and- check, and/or recognize an integrand as the result of a product, quotient, or chain rule calculation. Check each of your answers by differentiating. (Hint for Exercise 54: tanx=sinxcosx).

x2x3+15dx.

Calculate the exact value of each definite integral in Exercises 47–52 by using properties of definite integrals and the formulas in Theorem 4.13.

613(1-2x)2+4xdx

Use the Fundamental Theorem of Calculus to find the exact values of the given definite integrals. Use a graph to check your answer.

0112exdx

Use the Fundamental Theorem of Calculus to find the exact values of the given definite integrals. Use a graph to check your answer.

01x1+x2dx

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free