Chapter 4: Q. 4 (page 375)
Use the Fundamental Theorem of Calculus to find an equation for A(x) that does not involve an integral.
Chapter 4: Q. 4 (page 375)
Use the Fundamental Theorem of Calculus to find an equation for A(x) that does not involve an integral.
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider the region between f and g on [0, 4] as in the
graph next at the left. (a) Draw the rectangles of the left-
sum approximation for the area of this region, with n = 8.
Then (b) express the area of the region with definite
integrals that do not involve absolute values.
Without calculating any sums or definite integrals, determine the values of the described quantities. (Hint: Sketch graphs first.)
(a) The signed area between the graph of f(x) = cos x and the x-axis on [−π, π].
(b) The average value of f(x) = cos x on [0, 2π].
(c) The area of the region between the graphs of f(x) =
For each function f and interval [a, b] in Exercises 27–33, use the given approximation method to approximate the signed area between the graph of f and the x-axis on [a, b]. Determine whether each of your approximations is likely to be an over-approximation or an under-approximation of the actual area.
left sum with
a) n = 3 b) n = 6
Use the Fundamental Theorem of Calculus to find the exact values of the given definite integrals. Use a graph to check your answer.
Determine whether each of the statements that follow is true or false. If a statement is true, explain why. If a statement is false, provide a counterexample.
(a) True or False: The absolute area between the graph of f and the x-axis on [a, b] is equal to.
(b) True or False: The area of the region between f(x) = x − 4 and g(x) = on the interval [−3, 3] is negative.
(c) True or False: The signed area between the graph of f on [a, b] is always less than or equal to the absolute area on the same interval.
(d) True or False: The area between any two graphs f and g on an interval [a, b] is given by .
(e) True or False: The average value of the function f(x) = on [2, 6] is
= = 17.(f) True or False: The average value of the function f(x) = on [2, 6] is = = 8.
(g) True or False: The average value of f on [1, 5] is equal to the average of the average value of f on [1, 2] and the average value of f on [2, 5].
(h) True or False: The average value of f on [1, 5] is equal to the average of the average value of f on [1, 3] and the average value of f on [3, 5].
What do you think about this solution?
We value your feedback to improve our textbook solutions.