Chapter 4: Q. 24 (page 352)
Use geometry (i.e., areas of triangles, rectangles, and circles) to find the exact values of each of the definite integrals in Exercises .
.
Short Answer
The exact value ofis,.
Chapter 4: Q. 24 (page 352)
Use geometry (i.e., areas of triangles, rectangles, and circles) to find the exact values of each of the definite integrals in Exercises .
.
The exact value ofis,.
All the tools & learning materials you need for study success - in one app.
Get started for freeAs n approaches infinity this sequence of partial sums could either converge meaning that the terms eventually approach some finite limit or it could diverge to infinity meaning that the terms eventually grow without bound. which do you think is the case here and why?
Show thatis an anti-derivative of
Use integration formulas to solve each integral in Exercises 21–62. You may have to use algebra, educated guess- and- check, and/or recognize an integrand as the result of a product, quotient, or chain rule calculation. Check each of your answers by differentiating. (Hint for Exercise 54: ).
.
Describe the intervals on which the function f is positive, negative, increasing and decreasing. Them describe the intervals on which the function A is positive , negative, increasing and decreasing
Consider the region between f and g on [0, 4] as in the
graph next at the left. (a) Draw the rectangles of the left-
sum approximation for the area of this region, with n = 8.
Then (b) express the area of the region with definite
integrals that do not involve absolute values.
What do you think about this solution?
We value your feedback to improve our textbook solutions.