Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

For the graph of f in the given figure, approximate all the values x ∈ (0, 4) for which the derivative of f is zero or does not exist. Indicate whether f has a local maximum, minimum, or neither at each of these critical points.

Short Answer

Expert verified

The f has local maximum point at2,1·5and2,0·5.

Step by step solution

01

Step 1. Given information .

Consider the given graph .

02

Step 2. Classifying the maximum and local points .

To classify the maximum and minimum value in the graph of a function if the graph is smooth and unbroken, then somewhere between each root of f the function must turn around, and at that turning point it must have a local extremum with a horizontal tangent line .

In the given graph the turning points are at 2,1·5and 2,0·5these are the maximum local points .

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free