Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

WriteeachofthelimitsinExercises911intermsofdefiniteintegrals,andidentifyasolidofrevolutionwhosevolumeisrepresentedbythatdefiniteintegral:limnk=1nπ(1+xk*)21n,withxk*=xk=2+k1n

Short Answer

Expert verified

Thesolidofrevolutionisformedbyrotatingtheregionbelowtheline(1+x)intheinterval[2,3].

Step by step solution

01

Step 1. Given Information is:

limnk=1nπ(1+xk*)21n,withxk*=xk=2+k1n

02

Step 2. Finding Interval

Theexpressionforinputvariableisgivenas:xk=a+k(x)xk=a+kb-anComparethisexpressionwiththegivenexpressiontohavethevaluesasa=2andb-a=1.Usetheseequations,toderiveb=3.Thus,theintervalofintergrationis[2,3].

03

Step 3. Creating definite integral

limnk=1nπ(1+xk*)21n,withxk*=xk=2+k1nTocreatethedefiniteintegral,replacethesummationsignbythesignofdefiniteintegral,xbydx:limnk=1nπ(1+xk*)21n=23π(1+x)2dxlimnk=1nπ(1+xk*)21n=π23(1+x)2dx

04

Step 4. Result

ThisintegralcanbecomparedwiththeexpressionforsolidofrevolutiongivenasV=πabfx2dxComparethisexpressionwiththedefiniteintegralderivedabovetodeterminethefunctionforsolidofrevolution.Itisf(x)=1+xintheinterval[2,3].Thisrepresentsastraightline.Thus,thesolidofrevolutionisformedbyrotatingtheregionbelowthisstraightlineintheabovementionedinterval.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free