Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Provethatiffiscontinuouson[a,b]andCisanyrealnumber,thenf(x)andf(x)+Chavethesamearclengthon[a,b].Thenexplainwhythismakessensegraphically.

Short Answer

Expert verified

Thearclengthoff(x)fromx=atox=bcanberepresentedbythedefiniteintegral:ab1+(f'(x))2dxHere,whenf(x)andf(x)+Caredifferentiated,wegetthesamef'(x)asdifferentiationofaconstantiszero.whenthisissubstitutedinthedefiniteintegralwegetthesamearclengthinthesameinterval.Graphicallythismakessenseasthef(x)+Cisverticallyshiftedversionoff(x)andarclengthsofboththecurvesaresameinthesameinterval.

Step by step solution

01

Step 1. Given information 

f(x)iscontinuouson[a,b]andCisanyrealnumber.

02

Step 2. Finding arc lengths of f(x) and f(x)+C and proving why both are same.

Thearclengthoff(x)fromx=atox=bcanberepresentedbythedefiniteintegral:ab1+(f'(x))2dxHere,whenf(x)andf(x)+Caredifferentiated,wegetthesamef'(x)asdifferentiationofaconstantiszero.whenthisissubstitutedinthedefiniteintegralwegetthesamearclengthinthesameinterval.Graphicallythismakessenseasthef(x)+Cisverticallyshiftedversionoff(x)andarclengthsofboththecurvesaresameinthesameinterval.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free