Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 35–40, use definite integrals to calculate the centroid of the region described. Use graphs to verify that your answers are reasonable.

The region between f(x)=lnxandg(x)=2lnxon[a,b]=[1,e2]

Short Answer

Expert verified

The coordinates of centroid is (7.2, 1)

Step by step solution

01

Given Information 

The region between f (x) = ln x and g(x) = 2 − ln x on [a, b] = [1, e^2]

02

Step 2:  use the formula to find centroid 

Let f and g be integral functions on [a, b]. The centroid (x¯, y¯) of the region between the graphs of f (x) and g(x) on the interval [a, b] is the point

abx|f(x)-g(x)|dxab|f(x)-g(x)|dx,12ab|f(x)2-g(x)2|dxab|f(x)-g(x)|dx

03

Find the integral 

ab|f(x)-g(x)|dxf(x)=ln(x)g(x)=2-lnxintervalisa=1,b=e21e2|ln(x))-(2-lnx)|dx=1e22lnx-2dx=1e22lnxdx-1e22dx=2xlnx-x-2x1e2=2e2+1-2e2-2=4

04

Integrate 

abx|f(x)-g(x)|dx1e2x|ln(x))-(2-lnx)|dx=|1e22xln(x)-2xdx|=|1e22xln(x)-21e2xdx|=|2ln(x)1e2xdx-1e2ddxln(x)1e2xdxdx-21e2xdx=|2x2ln(x)2-x241e2-2x221e2|Substitutetheintervalsandsimplifyit=|2e4-e42+12-e4+1|=28.80

05

Integrate 

121e2|ln(x))2-(2-lnx)2|dx=12|1e2ln(x))2-4+4lnx-lnx^2|dx=12|1e2-4+4lnx|dx=12-4x+4(xlnx-x)1e2Substitutetheintervalsandsimplify=12(8)=4

06

find centroid 

substitute all the integral values and find out centroid

abx|f(x)-g(x)|dxab|f(x)-g(x)|dx,12ab|f(x)2-g(x)2|dxab|f(x)-g(x)|dx28.804,44(7.2,1)centroidis(7.2,1)

07

Graph both the curves

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free