Chapter 8: Problem 6
Suppose \(A, B\) and \(C\) are sets. Prove that if \(A \subseteq B\), then \(A-C \subseteq B-C\).
Chapter 8: Problem 6
Suppose \(A, B\) and \(C\) are sets. Prove that if \(A \subseteq B\), then \(A-C \subseteq B-C\).
All the tools & learning materials you need for study success - in one app.
Get started for freeFor each \(a \in \mathbb{R},\) let \(A_{a}=\left\\{\left(x, a\left(x^{2}-1\right)\right) \in \mathbb{R}^{2}: x \in \mathbb{R}\right\\} .\) Prove that \(\bigcap_{a \in \mathbb{R}} A_{a}=\\{(-1,0),(1,0)\\}\).
If \(A, B\) and \(C\) are sets, then \((A \cap B)-C=(A-C) \cap(B-C)\).
If \(m, n \in \mathbb{Z},\) then \(\\{x \in \mathbb{Z}: m n \mid x\\} \subseteq\\{x \in \mathbb{Z}: m \mid x\\} \cap\\{x \in \mathbb{Z}: n \mid x\\}\).
If \(A\) and \(B\) are sets in a universal set \(U,\) then \(\overline{A \cup B}=\bar{A} \cap \bar{B}\).
Suppose \(B \neq \varnothing\) and \(A \times B \subseteq B \times C .\) Prove that \(A \subseteq C\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.