Chapter 8: Problem 4
If \(m, n \in \mathbb{Z},\) then \(\\{x \in \mathbb{Z}: m n \mid x\\} \subseteq\\{x \in \mathbb{Z}: m \mid x\\} \cap\\{x \in \mathbb{Z}: n \mid x\\}\).
Chapter 8: Problem 4
If \(m, n \in \mathbb{Z},\) then \(\\{x \in \mathbb{Z}: m n \mid x\\} \subseteq\\{x \in \mathbb{Z}: m \mid x\\} \cap\\{x \in \mathbb{Z}: n \mid x\\}\).
All the tools & learning materials you need for study success - in one app.
Get started for freeProve that \(\\{12 a+25 b: a, b \in \mathbb{Z}\\}=\mathbb{Z}\).
If \(A, B\) and \(C\) are sets, then \(A \cap(B \cup C)=(A \cap B) \cup(A \cap C)\).
Suppose \(A \neq \varnothing\). Prove that \(A \times B \subseteq A \times C\) if and only if \(B \subseteq C\).
Suppose \(B \neq \varnothing\) and \(A \times B \subseteq B \times C .\) Prove that \(A \subseteq C\).
Use the methods introduced in this chapter to prove the following statements. Prove that \(\\{12 n: n \in \mathbb{Z}\\} \subseteq\\{2 n: n \in \mathbb{Z}\\} \cap\\{3 n: n \in \mathbb{Z}\\}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.