Chapter 8: Problem 19
Prove that \(\left\\{9^{n}: n \in \mathbb{Z}\right\\} \subseteq\left\\{3^{n}: n \in \mathbb{Z}\right\\},\) but \(\left\\{9^{n}: n \in \mathbb{Z}\right\\} \neq\left\\{3^{n}: n \in \mathbb{Z}\right\\}\).
Chapter 8: Problem 19
Prove that \(\left\\{9^{n}: n \in \mathbb{Z}\right\\} \subseteq\left\\{3^{n}: n \in \mathbb{Z}\right\\},\) but \(\left\\{9^{n}: n \in \mathbb{Z}\right\\} \neq\left\\{3^{n}: n \in \mathbb{Z}\right\\}\).
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(A, B\) and \(C\) are sets, then \(A \cap(B \cup C)=(A \cap B) \cup(A \cap C)\).
Prove that \(\\{12 a+25 b: a, b \in \mathbb{Z}\\}=\mathbb{Z}\).
Prove that \(\\{6 n: n \in \mathbb{Z}\\}=\\{2 n: n \in \mathbb{Z}\\} \cap\\{3 n: n \in \mathbb{Z}\\}\).
If \(m, n \in \mathbb{Z},\) then \(\\{x \in \mathbb{Z}: m n \mid x\\} \subseteq\\{x \in \mathbb{Z}: m \mid x\\} \cap\\{x \in \mathbb{Z}: n \mid x\\}\).
Suppose \(A\) and \(B\) are sets. Prove \(A \subseteq B\) if and only if \(A-B=\varnothing\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.