Chapter 8: Problem 15
If \(A, B\) and \(C\) are sets, then \((A \cap B)-C=(A-C) \cap(B-C)\).
Chapter 8: Problem 15
If \(A, B\) and \(C\) are sets, then \((A \cap B)-C=(A-C) \cap(B-C)\).
All the tools & learning materials you need for study success - in one app.
Get started for freeFor each \(a \in \mathbb{R},\) let \(A_{a}=\left\\{\left(x, a\left(x^{2}-1\right)\right) \in \mathbb{R}^{2}: x \in \mathbb{R}\right\\} .\) Prove that \(\bigcap_{a \in \mathbb{R}} A_{a}=\\{(-1,0),(1,0)\\}\).
If \(A, B\) and \(C\) are sets, then \(A \cup(B \cap C)=(A \cup B) \cap(A \cup C)\).
Prove that \(\bigcap_{x \in \mathbb{R}}\left[3-x^{2}, 5+x^{2}\right]=[3,5] .\)
If \(A, B\) and \(C\) are sets, then \((A \cup B)-C=(A-C) \cup(B-C)\).
Let \(A\) and \(B\) be sets. Prove that \(A \subseteq B\) if and only if \(A \cap B=A\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.